This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| const tf = require("@tensorflow/tfjs-node"); | |
| const fs = require("fs"); | |
| const { encode } = require("punycode"); | |
| function oneHotEncode(num) { | |
| const arr = Array(10).fill(0); | |
| arr[num] = 1; | |
| return arr; | |
| } | |
| const trainData = JSON.parse(fs.readFileSync("mnist_handwritten_train.json").toString()); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| const tf = require("@tensorflow/tfjs-node"); | |
| const fs = require("fs"); | |
| const mnistToImage = require("./mnist-image.js"); | |
| function oneHotEncode(num) { | |
| const arr = Array(10).fill(0); | |
| arr[num] = 1; | |
| return arr; | |
| } | |
| const trainData = JSON.parse(fs.readFileSync("mnist_handwritten_train.json").toString()); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| (async() => { | |
| const model = await tf.loadLayersModel('file://./encoder-model/model.json'); | |
| const input = tf.input({ shape: [2] }); | |
| const dense1 = model.layers[4].apply(input); | |
| const dense2 = model.layers[5].apply(dense1); | |
| const dense3 = model.layers[6].apply(dense2); | |
| const dense4 = model.layers[7].apply(dense3); | |
| const decoder = tf.model({ inputs: input, outputs: dense4 }); | |
| await decoder.save(`file://./decoder-model`); | |
| mnistToImage(decoder.predict(tf.tensor([ |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| const data = [ | |
| [ | |
| [0, 0], 1 | |
| ], | |
| [ | |
| [0, 1], 0 | |
| ], | |
| [ | |
| [1, 0], 0 | |
| ], |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| const data = [ | |
| [ | |
| [0, 0], 1 | |
| ], | |
| [ | |
| [0, 1], 0 | |
| ], | |
| [ | |
| [1, 0], 0 | |
| ], |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| vec3 transmission = vec3(0.0); | |
| float transmissionR, transmissionB, transmissionG; | |
| float randomCoords = rand(); | |
| float thickness_smear = thickness * max(pow(roughness, 0.33), anisotropy); | |
| vec3 distortionNormal = vec3(0.0); | |
| vec3 temporalOffset = vec3(time, -time, -time) * temporalDistortion; | |
| if (distortion > 0.0) { | |
| distortionNormal = distortion * vec3(snoiseFractal(vec3((pos * distortionScale + temporalOffset))), snoiseFractal(vec3(pos.zxy * distortionScale - temporalOffset)), snoiseFractal(vec3(pos.yxz * distortionScale + temporalOffset))); | |
| } | |
| for (float i = 0.0; i < ${samples}.0; i ++) { |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import googleIt from 'google-it'; | |
| import axios from 'axios'; | |
| import cheerio from 'cheerio'; | |
| import OpenAI from 'openai'; | |
| import readlineSync from 'readline-sync'; | |
| const openai = new OpenAI({ | |
| baseURL: "http://localhost:1234/v1", | |
| apiKey: 'My API Key' | |
| }); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import OpenAI from "openai"; | |
| import fs from "fs"; | |
| const culture = [ | |
| "meta-llama/llama-3.1-405b-instruct", | |
| "openai/gpt-4o", | |
| "anthropic/claude-3.5-sonnet", | |
| "qwen/qwen-2-72b-instruct", | |
| "microsoft/wizardlm-2-8x22b" | |
| ]; |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| https://0fe3-128-220-159-218.ngrok-free.app/v1/chat/completions |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def predict(i): | |
| a2=max(0,+i[221]+i[526]+i[565]+i[578]+i[592]+i[612]+i[619]+i[636]+i[637]+i[647]) | |
| a5=max(0,-i[75]+i[98]-i[133]-i[161]-i[162]-i[163]-i[190]-i[191]-i[218]-i[219]-i[220]-i[247]-i[248]-i[276]-i[277]+i[283]+i[294]-i[304]-i[315]-i[332]-i[340]-i[342]-i[445]-i[485]-i[500]-i[528]-i[529]-i[556]-i[557]-i[584]-i[612]+i[676]-i[743]-i[744]-i[745]) | |
| a7=max(0,-i[323]-i[324]-i[325]+i[329]-i[350]-i[352]+i[358]+i[388]+i[412]+i[453]+i[454]+i[456]+i[512]) | |
| a28=max(0,-i[322]-i[348]-i[349]+i[359]+i[370]+i[371]-i[375]-i[376]+i[387]+i[397]+i[398]-i[403]-i[404]+i[427]+i[428]-i[431]-i[435]+i[442]+i[455]+i[456]-i[460]-i[464]+i[484]-i[491]+i[524]+i[748]) | |
| a39=max(0,-i[155]-i[159]-i[377]-i[405]-i[431]-i[432]-i[538]-i[636]+i[677]) | |
| a56=max(0,+i[277]-i[484]-i[485]-i[514]-i[515]-i[516]+i[682]) | |
| a62=max(0,+i[104]+i[122]+i[129]+i[131]+i[132]+i[164]+i[165]+i[191]+i[192]+i[221]+i[250]-i[350]-i[368]+i[416]+i[445]+i[473]+i[528]+i[570]+i[572]-i[649]-i[677]-i[678]-i[679]-i[680]-i[707]-i[708]-i[709]-i[710]-i[711] |