$ docker images
$ docker ps
| #include "unimap_trans.h" | |
| enum macro_id { | |
| CPP_POINTER, | |
| CPP_COMMENT, | |
| }; | |
| // L0, for remapped X keycodes | |
| // 1st row | |
| #define AC_L0_LPRN ACTION_MODS_KEY(MOD_LSFT, KC_9) |
| #include "unimap_trans.h" | |
| #define AC_FN1 ACTION_LAYER_MOMENTARY(1) | |
| #define AC_FN2 ACTION_LAYER_TAP_KEY(2, KC_LCTL) | |
| #define AC_ENT2 ACTION_MODS_TAP_KEY(MOD_RCTL, KC_ENT) | |
| #define AC_LSOS ACTION_MODS_ONESHOT(MOD_LSFT) | |
| #define AC_RSOS ACTION_MODS_ONESHOT(MOD_RSFT) | |
| #define AC_L2(KEY) ACTION_MODS_KEY(MOD_LCTL, KC_##KEY) |
| @echo off | |
| setlocal | |
| :PROMPT | |
| @echo DELETING %1 !!! | |
| SET /P AREYOUSURE=Are you sure (Y/[N])? | |
| IF /I "%AREYOUSURE%" NEQ "Y" GOTO END | |
| takeown /f %1 /r /d y | |
| icacls %1 /grant Everyone:(OI)(CI)F /T | |
| icacls %1 /grant %username%:F /T |
| { | |
| "title": "HHKB for Human Being", | |
| "rules": [ | |
| { | |
| "description": "Change left_control+ijkl to arrow keys", | |
| "manipulators": [ | |
| { | |
| "from": { | |
| "key_code": "j", | |
| "modifiers": { |
| #!/bin/bash | |
| pushd $1 | |
| for branch in `git branch -a | grep remotes | grep -v HEAD | grep -v master `; do | |
| git branch --track ${branch#remotes/origin/} $branch | |
| done | |
| git fetch --all | |
| git pull --all | |
| popd |
| { | |
| "description": "Double click ESC to toggle cursor mode. ", | |
| "manipulators": [ | |
| { | |
| "conditions": [ | |
| { | |
| "name": "cursor_mode_trigger_key_pressed", | |
| "type": "variable_if", | |
| "value": 1 | |
| }, |
| { | |
| "build_command": "$sourcepath $classpath $d \"$file\"", | |
| "java_executables": | |
| { | |
| "build": "nxjc", | |
| "run": "nxjlink", | |
| "version": "nxjc" | |
| }, | |
| "jdk_version": | |
| { |
Based on the instruction here https://github.com/gw0/docker-keras with a few modification on how to run on GPU:
The original snippet:
$ docker run -it --rm $(ls /dev/nvidia* | xargs -I{} echo '--device={}') $(ls /usr/lib/*-linux-gnu/{libcuda,libnvidia}* | xargs -I{} echo '-v {}:{}:ro') -v $(pwd):/srv gw000/keras:2.1.4-py2-tf-gpu /srv/run.py
The idea is to map local NVIDIA devices(/dev/nvidia*) to container environment, and map local NVIDIA drivers and libraries to proper container's /usr/lib/ directories. With NVIDIA driver 387.34(latest when written), this is snippet is no longer sufficient.
Modified snippet:
| # kaggle/python docker .bashrc for linux | |
| kpython(){ | |
| docker run -v $PWD:/tmp/working -w=/tmp/working --rm -it kaggle/python python "$@" | |
| } | |
| ikpython() { | |
| docker run -v $PWD:/tmp/working -w=/tmp/working --rm -it kaggle/python ipython | |
| } | |
| kjupyter() { |