Skip to content

Instantly share code, notes, and snippets.

@BrianMartell
BrianMartell / PUH_v6_GW_Photon_Redshift_Sim.py
Created December 6, 2025 06:33
PUH-BrianMartell PUH_v6_GW_Photon_Redshift_Sim.py- updated new Py code
import numpy as np
import matplotlib.pyplot as plt
z = np.linspace(0, 3, 500)
a = 1/(1+z)
plt.figure(figsize=(8,5))
plt.plot(z, a, 'b-', label='Scale factor a(z)')
plt.xlabel('Redshift z')
plt.ylabel('Scale factor a')
@BrianMartell
BrianMartell / PUH_v6_GW_Photon_Redshift.tex
Created December 6, 2025 06:32
PUH-BrianMartell PUH_v6_GW_Photon_Redshift.tex- Updated Paper v6, In PUH v6 both photons and gravitational waves are pure excitations of the same E₈ lattice — they both travel at exactly c and follow identical null geodesics through the expanding lattice. Cosmological redshift therefore works exactly the same way for both: • As the lattice itsel…
\documentclass[11pt]{article}
\usepackage{amsmath,amssymb}
\usepackage{hyperref}
\usepackage[a4paper,margin=1in]{geometry}
\title{Photonic Universe Hypothesis (PUH v6):\\Identical Redshift of Photons and Gravitational Waves}
\author{Brian Martell}
\date{4 December 2025}
\begin{document}
@BrianMartell
BrianMartell / PUH_v6_Time_Emergent_Sim.py
Created December 6, 2025 05:33
PUH- BrianMartell PUH_v6_Time_Emergent_Sim.py- update new Py code
import numpy as np
import matplotlib.pyplot as plt
v_over_c = np.linspace(0, 0.999999, 500)
dtau_dt = np.sqrt(1 - v_over_c**2)
plt.figure(figsize=(8,5))
plt.semilogy(v_over_c, dtau_dt, 'b-')
plt.xlabel('v/c')
plt.ylabel('Proper time rate $d\\tau/dt$')
@BrianMartell
BrianMartell / PUH_v6_Time_Emergent.tex
Created December 6, 2025 05:29
PUH- BrianMartell PUH_v6_Time_Emergent.tex- Updated Paper v6, In PUH v6 photons and gravitational waves are pure lattice excitations travelling at c → their proper time τ = 0. Massive particles are topological folds/knots in the lattice → they cannot travel at c, so they experience proper time τ > 0. Time itself is therefore not a fundamental pr…
\documentclass[11pt]{article}
\usepackage{amsmath,amssymb}
\usepackage{hyperref}
\usepackage[a4paper,margin=1in]{geometry}
\title{Photonic Universe Hypothesis (PUH v6):\\Time as Emergent Property of Lattice Folds}
\author{Brian Martell}
\date{4 December 2025}
\begin{document}
@BrianMartell
BrianMartell / PUH_v6_Scale_Invariant_Sim.py
Created December 5, 2025 21:05
PUH-BrianMartell PUH_v6_Scale_Invariant_Sim.py- Updated New Py Code
import numpy as np
import matplotlib.pyplot as plt
k = np.logspace(-4, 1, 500)
n_s = 0.965
P_k = k**(n_s - 1)
plt.figure(figsize=(8,5))
plt.loglog(k, P_k, 'b-', label='PUH v6')
plt.axhline(1, color='k', ls=':', label='Perfect scale-invariant (n_s=1)')
@BrianMartell
BrianMartell / PUH_v6_Scale_Invariant_Spectrum.tex
Created December 5, 2025 21:01
PUH-BrianMartell PUH_v6_Scale_Invariant_Spectrum.tex- Updated Paper v6, PUH v6 does not need inflation and produces a nearly scale-invariant power spectrum (nₛ ≈ 0.965) exactly the way the CMB demands. Here’s how: During the long contraction phase that forms the mega-Planck star, the universe is matter-dominated (w ≈ 0). Quantum vacuum fluctuati…
\documentclass[11pt]{article}
\usepackage{amsmath,amssymb}
\usepackage{hyperref}
\usepackage[a4paper,margin=1in]{geometry}
\title{Photonic Universe Hypothesis (PUH v6):\\Nearly Scale-Invariant Spectrum without Inflation}
\author{Brian Martell}
\date{4 December 2025}
\begin{document}
@BrianMartell
BrianMartell / PUH_v6_Flatness_Horizon_Sim.py
Created December 5, 2025 20:55
PUH-BrianMartell PUH_v6_Flatness_Horizon_Sim.py- Updated New Py Code
import numpy as np
import matplotlib.pyplot as plt
M = 1e51 # kg
G = 6.6743e-11
c = 3e8
ell_P = 1.616e-35
r_S = 2 * G * M / c**2
Omega_k = (ell_P / r_S)**2
@BrianMartell
BrianMartell / PUH_v6_Flatness_Horizon.tex
Created December 5, 2025 20:51
PUH-BrianMartell PUH_v6_Flatness_Horizon.tex- Updated Paper v6, PUH v6 does not need inflation and solves both the flatness and horizon problems geometrically. • Flatness problem → The mega-Planck star core is so massive that its Schwarzschild radius r_S is essentially the entire observable universe today. At the moment of rebound the curvature …
\documentclass[11pt]{article}
\usepackage{amsmath,amssymb}
\usepackage{hyperref}
\usepackage[a4paper,margin=1in]{geometry}
\title{Photonic Universe Hypothesis (PUH v6):\\Flatness and Horizon Problems without Inflation}
\author{Brian Martell}
\date{4 December 2025}
\begin{document}
@BrianMartell
BrianMartell / PUH_v6_DESI_Euclid_Sim.py
Created December 5, 2025 20:45
PUH-BrianMartell PUH_v6_DESI_Euclid_Sim.py-Updated New Py Code
import numpy as np
import matplotlib.pyplot as plt
theta = np.linspace(0, np.pi, 500)
A_H = 0.09
H_ratio = 1 + A_H * np.cos(theta)
plt.figure(figsize=(8,5))
plt.plot(np.rad2deg(theta), H_ratio, 'b-')
plt.axhline(1.09, color='r', ls='--', label='Fast pole +9%')
@BrianMartell
BrianMartell / PUH_v6_DESI_Euclid_Tests.tex
Created December 5, 2025 20:42
PUH-BrianMartell PUH_v6_DESI_Euclid_Tests.tex- Updated Paper v6, DESI and Euclid are the decisive tests for PUH v6. PUH predicts the universe is not perfectly isotropic — it has a tiny built-in dipole from the 10⁻⁵⁹ geometric flaw in the rebound. This dipole makes the expansion rate and structure growth slightly different in opposite directions.…
\documentclass[11pt]{article}
}
\usepackage{amsmath,amssymb}
\usepackage{hyperref}
\usepackage[a4paper,margin=1in]{geometry}
\title{Photonic Universe Hypothesis (PUH v6):\\Definitive Tests with DESI and Euclid}
\author{Brian Martell}
\date{4 December 2025}