Skip to content

Instantly share code, notes, and snippets.

@BrianMartell
BrianMartell / PUH_v6_Hubble_Tension_Sim.py
Created December 5, 2025 20:35
PUH-BrianMartell PUH_v6_Hubble_Tension_Sim.py- Updated New Py Code
import numpy as np
import matplotlib.pyplot as plt
H0_cmb = 67
delta_H = 0.09
H_fast = H0_cmb * (1 + delta_H/2)
H_slow = H0_cmb * (1 - delta_H/2)
print(f"Fast hemisphere: {H_fast:.1f} km/s/Mpc")
print(f"Slow hemisphere: {H_slow:.1f} km/s/Mpc")
@BrianMartell
BrianMartell / PUH_v6_Hubble_Tension.tex
Created December 5, 2025 20:31
PUH-BrianMartell PUH_v6_Hubble_Tension.tex- Updated Paper v6, PUH v6 naturally resolves the Hubble tension (73 vs 67 km/s/Mpc) without any new physics. The rebound is slightly dipolar because of the Planck-scale flaw δ ≈ 10⁻⁵⁹. One hemisphere expands ~9 % faster than the other from the very beginning. The CMB measures the average expansion acros…
\documentclass[11pt]{article}
\usepackage{amsmath,amssymb}
\usepackage{hyperref}
\usepackage[a4paper,margin=1in]{geometry}
\title{Photonic Universe Hypothesis (PUH v6):\\Resolution of Hubble Tension via Dipolar Rebound}
\author{Brian Martell}
\date{4 December 2025}
\begin{document}
@BrianMartell
BrianMartell / PUH_v6_Acoustic_Peaks_Sim.py
Created December 5, 2025 20:23
PUH-BrianMartell PUH_v6_Acoustic_Peaks_Sim.py- Updated New Py Code
import numpy as np
import matplotlib.pyplot as plt
ell = np.arange(2, 2500)
# Standard ΛCDM-like power spectrum (mock)
Cl = 1e-10 * ell**(-2) * (1 + np.sin(ell/220 * np.pi)) # very rough peaks
plt.figure(figsize=(10,6))
plt.loglog(ell, Cl, 'b-', label='PUH v6 (standard physics after rebound)')
plt.xlabel('Multipole $\ell$')
@BrianMartell
BrianMartell / PUH_v6_Acoustic_Peaks_Compatibility.tex
Created December 5, 2025 20:20
PUH-BrianMartell PUH_v6_Acoustic_Peaks_Compatibility.tex- Updated Paper v6, The PUH does not try to replace the physics that creates the beautiful acoustic peaks in the CMB. It only supplies the initial amplitude Δρ/ρ ≈ 10⁻⁵ and guarantees a **perfectly flat universe (Ω_k = 0). Once those two numbers are set by the Planck-scale flaw δ ≈ 10⁻⁵⁹ an…
\documentclass[11pt]{article}
\usepackage{amsmath,amssymb}
\usepackage{hyperref}
\usepackage[a4paper,margin=1in]{geometry}
\title{Photonic Universe Hypothesis (PUH v6):\\Acoustic Peaks from Standard Post-Rebound Physics}
\author{Brian Martell}
\date{4 December 2025}
\begin{document}
@BrianMartell
BrianMartell / PUH_v6_CMB_Anomalies_Sim.py
Created December 5, 2025 19:14
PUH-BrianMartell PUH_v6_CMB_Anomalies_Sim.py- Updsted New Py Code
import numpy as np
import matplotlib.pyplot as plt
M = np.logspace(50, 55, 500) # kg
r_S = 2*6.6743e-11 * M / (3e8)**2
delta = 1.616e-35 / r_S
C_geom = 1e-5 / delta
plt.figure(figsize=(8,5))
plt.loglog(M, delta, 'b-', label=r'$\delta$')
@BrianMartell
BrianMartell / PUH_v6_CMB_Anomalies.tex
Created December 5, 2025 19:10
PUH-BrianMartell PUH_v6_CMB_Anomalies.tex- Updated New Paper V6, The same Planck-scale geometric flaw δ ≈ 10⁻⁵⁹ that creates the matter–antimatter asymmetry also seeds the density fluctuations Δρ/ρ ≈ 10⁻⁵ seen in the CMB. The flaw makes one pole of the two rebound jets slightly stronger. That tiny initial pressure difference gets amplified by ro…
\documentclass[11pt]{article}
\usepackage{amsmath,amssymb}
\usepackage{hyperref}
\usepackage[a4paper,margin=1in]{geometry}
\title{Photonic Universe Hypothesis (PUH v6):\\CMB Anomalies from Rebound Jet Asymmetry}
\author{Brian Martell}
\date{4 December 2025}
\begin{document}
@BrianMartell
BrianMartell / PUH_v6_Density_Contrast_Sim.py
Created December 5, 2025 18:57
PUH-BrianMartell PUH_v6_Density_Contrast_Sim.py- Updated New Py Code
import numpy as np
import matplotlib.pyplot as plt
M = np.logspace(50, 55, 500) # kg
r_S = 2* G * M / c**2
delta = ell_P / r_S
C_geom = 1e-5 / delta # amplification needed
plt.figure(figsize=(8,5))
plt.loglog(M, delta, 'b-', label=r'$\delta$')
@BrianMartell
BrianMartell / PUH_v6_Density_Contrast_Seed.tex
Created December 5, 2025 18:54
PUH-BrianMartell PUH_v6_Density_Contrast_Seed.tex- Updated Paper v6, The same Planck-scale geometric flaw δ ≈ 10⁻⁵⁹ that creates the matter–antimatter asymmetry also seeds the density fluctuations Δρ/ρ ≈ 10⁻⁵ seen in the CMB. The flaw makes one pole of the two rebound jets slightly stronger. That tiny initial pressure difference gets amplified b…
\documentclass[11pt]{article}
\usepackage{amsmath,amssymb}
\usepackage{hyperref}
\usepackage[a4paper,margin=1in]{geometry}
\title{Photonic Universe Hypothesis (PUH v6):\\CMB Density Contrast from Geometric Flaw}
\author{Brian Martell}
\date{4 December 2025}
\begin{document}
@BrianMartell
BrianMartell / PUH_v6_Rebound_Trigger_Sim.py
Created December 5, 2025 18:31
PUH-BrianMartell PUH_v6_Rebound_Trigger_Sim.py- Updated New Py code
import numpy as np
import matplotlib.pyplot as plt
delta = np.logspace(-65, -55, 500)
H = np.sqrt(delta) * 1e43 # normalized to Planck frequency
plt.figure(figsize=(8,5))
plt.loglog(delta, H, 'b-')
plt.xlabel('Geometric asymmetry $\delta$')
plt.ylabel('Initial Hubble $H_{\\rm rebound}$ (arb.)')
@BrianMartell
BrianMartell / PUH_v6_Rebound_Trigger.tex
Created December 5, 2025 18:29
PUH-BrianMartell PUH_v6_Rebound_Trigger.tex- Updated Paper v6, The rebound that launches the Big Bang is triggered by the same tiny geometric flaw δ that produced the matter–antimatter asymmetry. The mega-Planck star shell is perfectly balanced: inner photon pressure = outer tachyon containment pressure. The flaw δ makes one pole of the shell mi…
\documentclass[11pt]{article}
\usepackage{amsmath,amssymb}
\usepackage{hyperref}
\usepackage[a4paper,margin=1in]{geometry}
\title{Photonic Universe Hypothesis (PUH v6):\\Big-Bang Trigger from Geometric Flaw}
\author{Brian Martell}
\date{4 December 2025}
\begin{document}