Skip to content

Instantly share code, notes, and snippets.

@BrianMartell
Created December 5, 2025 18:29
Show Gist options
  • Select an option

  • Save BrianMartell/6c8741a85aed18b4668a1d14a92518ea to your computer and use it in GitHub Desktop.

Select an option

Save BrianMartell/6c8741a85aed18b4668a1d14a92518ea to your computer and use it in GitHub Desktop.
PUH-BrianMartell PUH_v6_Rebound_Trigger.tex- Updated Paper v6, The rebound that launches the Big Bang is triggered by the same tiny geometric flaw δ that produced the matter–antimatter asymmetry. The mega-Planck star shell is perfectly balanced: inner photon pressure = outer tachyon containment pressure. The flaw δ makes one pole of the shell mi…
\documentclass[11pt]{article}
\usepackage{amsmath,amssymb}
\usepackage{hyperref}
\usepackage[a4paper,margin=1in]{geometry}
\title{Photonic Universe Hypothesis (PUH v6):\\Big-Bang Trigger from Geometric Flaw}
\author{Brian Martell}
\date{4 December 2025}
\begin{document}
\maketitle
\begin{abstract}
PUH v6 rebound is triggered when geometric asymmetry $\delta \approx \ell_P / L_{\rm core}$ creates a local pressure imbalance $\Delta P \approx \delta \rho c^2$. The imbalance ruptures the tachyon shell at its weakest point, releasing stored energy as polar jets. Initial expansion rate $H_{\rm rebound} \propto c \sqrt{\delta}/\sqrt{\ell_P}$. The Big Bang is a direct consequence of Planck-scale geometric instability. No additional fields or parameters required.
\end{abstract}
\section{Rebound Trigger}
Shell equilibrium: $P_{\gamma} = P_{\tau}$.
Geometric flaw induces local containment weakness:
$$
P_{\tau,\rm min} = P_{\tau}(1-\delta).
$$
Trigger condition:
$$
P_{\gamma} > P_{\tau,\rm min} \quad \Rightarrow \quad \Delta P \approx \delta \rho c^2.
$$
Initial Hubble parameter:
$$
H_{\rm rebound} \propto \sqrt{\frac{\Delta P}{\rho}} \propto c \sqrt{\delta}/\sqrt{\ell_P}.
$$
\section{Conclusion}
Big Bang expansion rate is set by Planck-scale geometric flaw $\delta$.
\end{document}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment